000 03674cam a22005052 4500
001 1751280330
003 DE-627
005 20241227231600.0
007 cr uuu---uuuuu
008 210312s2017 xx |||||o 00| ||eng c
020 _a9783319682884
035 _a(DE-627)1751280330
035 _a(DE-599)KEP055179894
035 _a(EBL)EBL6296897
035 _a(EBC)EBC6296897
035 _a(DE-627-1)055179894
040 _aDE-627
_bger
_cDE-627
_erda
041 _aeng
082 0 _a025.04
100 1 _aFernandez, Miriam
_eVerfasserIn
_4aut
245 1 4 _aThe Semantic Web - ISWC 2017
_b16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I
264 1 _aCham
_bSpringer International Publishing AG
_c2017
264 4 _c©2017
300 _a1 online resource (806 pages)
336 _aText
_btxt
_2rdacontent
337 _aComputermedien
_bc
_2rdamedia
338 _aOnline-Ressource
_bcr
_2rdacarrier
490 0 _aLecture Notes in Computer Science Ser.
_vv.10587
500 _aDescription based on publisher supplied metadata and other sources
520 _aIntro -- Preface -- Organization -- Abstracts of Invited Talks -- From Relational to Semantic Data Mining -- Ontologies for the Modern Age -- Applied Semantics: Beyond the Catalog -- Contents - Part I -- Contents -- Part II -- Research Track -- Multi-label Based Learning for Better Multi-criteria Ranking of Ontology Reasoners -- 1 Introduction -- 2 Background and Related Works -- 2.1 Key Notions of Multi-label Learning Paradigm -- 2.2 Multi-label Learning Techniques for Algorithm Selection -- 2.3 Ontology Features -- 3 Novel Multi-label Learning Method for Multi-criteria Ranking of Ontology Reasoners -- 3.1 Reasoner Ranking Criteria and Preference Rules -- 3.2 Specification of the Novel Multi-label Ranking Method -- 3.3 Multi-RakSOR Learning and Prediction Steps -- 3.4 Ranking Consistency Checking Method -- 4 Data Collection -- 5 Experimental Evaluation of Multi-RakSOR -- 5.1 Evaluation Metrics -- 5.2 Multi-label Learning Methods -- 5.3 Relevance Prediction Assessment Results -- 5.4 Ranking Prediction Assessment Results -- 6 Experimental Evaluation of Meta-RakSOR -- 7 Conclusion -- References -- The Efficacy of OWL and DL on User Understanding of Axioms and Their Entailments -- 1 Introduction -- 2 Background -- 3 Tasks: Understanding Axioms and Inference -- 4 Main Hypotheses -- 5 Empirical Study Design -- 5.1 Designing Questions for the Study -- 5.2 Experiment Phases -- 5.3 Experiment Execution -- 5.4 Statistical Methods -- 6 Results -- 6.1 Understanding Tasks -- 6.2 Sound Inference Tasks -- 6.3 Unsound Inference Tasks -- 6.4 Time Performance -- 7 Discussion -- 7.1 Understanding Axioms -- 7.2 Sound Inferences -- 7.3 Unsound Inferences -- 8 Threats to Validity -- 9 Conclusion -- References -- A Decidable Very Expressive Description Logic for Databases -- 1 Introduction -- 2 The Description Logic DLR+ -- 3 Expressiveness of DLR+.
650 4 _aSemantic Web-Congresses
650 4 _aElectronic books
700 1 _aTamma, Valentina
_eMitwirkendeR
_4ctb
700 1 _aLecue, Freddy
_eMitwirkendeR
_4ctb
700 1 _aCudré-Mauroux, Philippe
_eMitwirkendeR
_4ctb
700 1 _aSequeda, Juan
_eMitwirkendeR
_4ctb
700 1 _aLange, Christoph
_eMitwirkendeR
_4ctb
700 1 _aHeflin, Jeff
_eMitwirkendeR
_4ctb
700 1 _ad'Amato, Claudia
_eMitwirkendeR
_4ctb
776 1 _z9783319682877
776 0 8 _iErscheint auch als
_nDruck-Ausgabe
_z9783319682877
856 4 0 _uhttps://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6296897
_mX:EBC
_zlizenzpflichtig
942 _2ddc
_cBK
_n0
951 _aBO
999 _c222
_d222