000 05662cam a22007332 4500
001 1653125039
003 DE-627
005 20241227232235.0
007 cr uuu---uuuuu
008 131203s2013 gw |||||o 00| ||eng c
020 _a9783642387210
024 7 _a10.1007/978-3-642-38721-0
_2doi
035 _a(DE-627)1653125039
035 _a(DE-576)39819713X
035 _a(DE-599)BSZ39819713X
035 _a(OCoLC)863904946
035 _a(DE-He213)978-3-642-38721-0
040 _aDE-627
_bger
_cDE-627
_erakwb
041 _aeng
044 _cXA-DE
_cXD-US
_cXA-NL
_cXA-GB
050 0 _aQA75.5-76.95
072 7 _aUNH
_2bicssc
072 7 _aUND
_2bicssc
072 7 _aCOM030000
_2bisacsh
082 0 _a650
082 0 _a025.04
084 _aST 302
_2rvk
_0(DE-625)rvk/143652:
084 _a54.72
_2bkl
084 _a06.74
_2bkl
100 1 _aEuzenat, Jérôme
_0(DE-588)132230755
_0(DE-627)519852486
_0(DE-576)187760322
_4aut
245 1 0 _aOntology Matching
_cby Jérôme Euzenat, Pavel Shvaiko
250 _a2nd ed. 2013
264 1 _aHeidelberg
_aNew York
_aDordrecht
_aLondon
_bSpringer
_c2013
300 _aOnline-Ressource (XVII, 511 p. 103 illus., 1 illus. in color, online resource)
336 _aText
_btxt
_2rdacontent
337 _aComputermedien
_bc
_2rdamedia
338 _aOnline-Ressource
_bcr
_2rdacarrier
490 0 _aSpringerLink
_aBücher
505 8 0 _aIntroductionPart I The matching problem -- Applications -- The matching problem -- Methodology -- Part II Ontology matching techniques -- Classifications of ontology matching techniques -- Basic similarity measures -- Global matching methods -- Matching strategies -- Part III Systems and evaluation -- Overview of matching systems -- Evaluation of matching systems -- Part IV Representing, explaining, and processing alignments -- Frameworks and formats: representing alignments -- User involvement -- Processing alignments -- Part V Conclusions -- Conclusions -- Appendix A: Legends of figures -- Appendix B: Running example -- Appendix C: Exercises -- Appendix D: Solution to exercises.
520 _aOntologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko’s book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, and artificial intelligence. The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content. In particular, the book includes a new chapter dedicated to the methodology for performing ontology matching. It also covers emerging topics, such as data interlinking, ontology partitioning and pruning, context-based matching, matcher tuning, alignment debugging, and user involvement in matching, to mention a few. More than 100 state-of-the-art matching systems and frameworks were reviewed. With Ontology Matching, researchers and practitioners will find a reference book that presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can be equally applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a systematic and detailed account of matching techniques and matching systems from theoretical, practical and application perspectives
650 0 _aComputer science
650 0 _aInformation storage and retrieval systems
650 0 _aArtificial intelligence
650 0 _aManagement information systems
650 0 _aComputer Science
650 0 _aComputer science
650 0 _aInformation storage and retrieval systems
650 0 _aArtificial intelligence
650 0 _aManagement information systems
650 4 _aOntologies (Information retrieval)
650 4 _aSemantic integration (Computer systems)
700 1 _81\p
_aShvaiko, Pavel
_0(DE-588)1045324582
_0(DE-627)774088230
_0(DE-576)398936803
_4oth
776 1 _z9783642387203
776 0 8 _iErscheint auch als
_nDruck-Ausgabe
_aEuzenat, Jérôme
_tOntology matching
_bSecond edition
_dHeidelberg : Springer, 2013
_hxvii, 511 Seiten
_w(DE-627)1603216820
_w(DE-576)382816994
_z9783642387203
_z3642387209
856 4 0 _uhttps://doi.org/10.1007/978-3-642-38721-0
_3Volltext
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-38721-0
_zlizenzpflichtig
_3Volltext
856 4 2 _uhttps://swbplus.bsz-bw.de/bsz39819713xcov.jpg
_mV:DE-576
_mX:springer
_qimage/jpeg
_v20150316113441
_3Cover
883 _81
_acgwrk
_d20241001
_qDE-101
_uhttps://d-nb.info/provenance/plan#cgwrk
936 r v _aST 302
936 b k _a54.72
936 b k _a06.74
942 _2ddc
_cBK
_n0
951 _aBO
999 _c226
_d226