000 05962cam a22006132 4500
001 165796020X
003 DE-627
005 20241227232719.0
007 cr uuu---uuuuu
008 181214s2015 xx |||||o 00| ||eng c
020 _a9781118845691
035 _a(DE-627)165796020X
035 _a(DE-576)515328170
035 _a(DE-599)KEP026737183
035 _a(DE-627-1)026737183
035 _a(EBC)EBC1895654
035 _a(EBR)ebr11011145
035 _a(EBL)EBL1895654
040 _aDE-627
_bger
_cDE-627
_erda
041 _aeng
082 0 _a658.4032
084 _aST 320
_2rvk
_0(DE-625)rvk/143657:
084 _aST 530
_2rvk
_0(DE-625)rvk/143679:
084 _a54.61
_2bkl
100 1 _aBrath, Richard
_eVerfasserIn
_0(DE-588)1096843862
_0(DE-627)856978531
_0(DE-576)46811601X
_4aut
245 1 0 _aGraph Analysis and Visualization
_bDiscovering Business Opportunity in Linked Data
250 _a1st ed.
264 1 _aSomerset
_bWiley
_c2015
264 4 _c©2015.
300 _a1 online resource (539 pages)
336 _aText
_btxt
_2rdacontent
337 _aComputermedien
_bc
_2rdamedia
338 _aOnline-Ressource
_bcr
_2rdacarrier
500 _aDescription based on publisher supplied metadata and other sources
520 _aWring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences - until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative
520 _aIntro -- Introduction -- Part 1: Overview -- Chapter 1: Why Graphs? -- Visualization in Business -- Graphs in Business -- Finding Anomalies -- Managing Networks and Supply Chains -- Identifying Risk Patterns -- Optimizing Asset Mix -- Mapping Social Hierarchies -- Detecting Communities -- Graphs Today -- Summary -- Chapter 2: A Graph for Every Problem -- Relationships -- Hierarchies -- Communities -- Flows -- Spatial Networks -- Summary -- Part 2: Process and Tools -- Chapter 3: Data-Collect, Clean, and Connect -- Know the Objective -- Collect: Identify Data -- Potential Graph Data Sources -- Potential Hierarchy Data Sources -- Getting the Data -- Clean: Fix the Data -- Connect: Organize Graph Data -- Compute the Graph -- Graph Data File Formats -- Putting It All Together -- Summary -- Chapter 4: Stats and Layout -- Basic Graph Statistics -- Size (Number of Nodes and Number of Edges) -- Density -- Number of Components -- Degree and Paths -- Centrality -- Viral Marketing Example -- Layouts -- Node-and-Link Layouts -- Other Layouts -- Force-Directed Layout -- Node-Only Layout -- Time Oriented -- Top-Down and Other Orthogonal Hierarchies -- Radial Hierarchy -- Geographic Layout and Maps -- Chord Diagrams -- Adjacency Matrix -- Treemap -- Hierarchical Pie Chart -- Parallel Coordinates -- Putting It All Together -- Summary -- Chapter 5: Visual Attributes -- Essential Visual Attributes -- Key Node Attributes -- Node Size -- Node Color -- Labels -- Key Edge Attributes -- Edge Weight -- Edge Color -- Edge Type -- Combining Basic Attributes -- Bundles, Shapes, Images, and More -- Bundled Edges -- Shape -- Node Image -- Node Border -- More Attributes -- Interference and Separation -- Putting It All Together -- Summary -- Chapter 6: Explore and Explain -- Explore, Explain, and Export -- Essential Exploratory Interactions.
650 0 _aNetwork analysis (Planning)
650 0 _aGraph theory -- Data processing
650 0 _aBusiness -- Data processing
650 4 _aNetwork analysis (Planning);Graph theory ; Data processing.;Business ; Data processing
650 4 _aBusiness ; Data processing
650 4 _aGraph theory ; Data processing
650 4 _aNetwork analysis (Planning)
650 4 _aElectronic books
700 1 _aJonker, David
_eMitwirkendeR
_0(DE-588)1097274101
_0(DE-627)857096427
_0(DE-576)46822100X
_4ctb
776 1 _z9781118845844
776 0 8 _iErscheint auch als
_nDruck-Ausgabe
_aBrath, Richard
_tGraph analysis and visualization
_dIndianapolis, Ind. : Wiley, 2015
_hXXII, 513 Seiten
_w(DE-627)795307160
_w(DE-576)425741389
_z9781118845844
856 4 0 _uhttps://ebookcentral.proquest.com/lib/kxp/detail.action?docID=1895654
_mX:EBC
_zlizenzpflichtig
_3Volltext
936 r v _aST 320
936 r v _aST 530
936 b k _a54.61
942 _2ddc
_cBK
_n0
951 _aBO
999 _c230
_d230